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Checking for errors in calculations and software: 
Dimensional balance and conformance of units 
 

ABSTRACT 

Although there has always been a general awareness that mathematical expressions must make 
dimensional sense in terms of the units involved, it is very easy to make simple mistakes in 
quantitative work that result in profound and potentially dangerous errors.  Such errors are 
ubiquitous in modern research, as can be seen by reviewing government publications where 
dimensional errors persist despite peer and public review.  Software methods have recently 
become available for checking calculations, equations, algorithms and programs for dimensional 
soundness.  Correctness depends on conformance at two levels: balance of dimensions and 
agreement among units.  Error at either level can now be detected automatically by software.  
Disagreement among units can even be automatically corrected by software procedures.  These 
software tools can be used to check for errors in calculations and software source code in a way 
that is similar to using a spelling or grammar checker for text. 
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INTRODUCTION 

While the widespread use of computers and calculators has surely reduced the incidence of 
numerical errors in calculations (see Wise, 1995), there are non-numerical errors that cannot be 
eliminated by traditional software.  One fundamental consideration for almost any calculation or 
equation, numerical or not, is whether the dimensions and units balance appropriately.  If they do 
not, the expression is nonsensical and could not possibly be correct no matter what numerical 
values it may contain (Hart, 1995; Edwards and Hamson, 1989; Wilson, 1952; inter alia).  
Although such errors are profound ones, there has heretofore been no way to check for them 
except by an ad hoc manual (and often painstaking) analysis.  This paper describes recent 
software developments that can now automate this checking by performing dimensional analyses 
as well as a human analyst, but without the risk of careless mistakes. 

DIMENSIONAL BALANCE AND UNIT CONFORMANCE 

Virtually all textbooks on model building (e.g., Wilson, 1952; Bratley et al., 1983; Swartzman 
and Kaluzny, 1987; Edwards and Hamson, 1990; Adler, 1993) caution that mathematical 
expressions must make dimensional sense in terms of the units involved.  The central rule is that 
terms to be added together or compared with one another must have balanced dimensions.  In 
short, one may not add apples and oranges.  In the following expressions, a and b must have 
balanced dimensions and conformable units. 

a + b  a < b  a ³ b  max(a,b) 

a - b  a > b  a £ b  min(a,b) 

Note that balance does not mean the units or even dimensions must be identical.  For instance, 
‘meter gram’ and ‘gram meter’ balance, as do ‘meter2’, ‘square meter’ and ‘meter3/meter’.  
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Moreover, the dimension [velocity] balances with [distance][time]-1.  Although easily appreciated 
by a human analyst, these balances can be difficult for a checking algorithm to recognize.  

Having balanced dimensions among terms is, by itself, insufficient for an addition, subtraction or 
comparison to make sense.  For instance, Russian rubles and U.S. dollars both measure monetary 
value, but until quite recently, they were not legally exchangeable and therefore one could not 
speak strictly about comparing quantities measured in the two currencies.  Baud rate and bits per 
second are another example.  Both measure the dimension [information flow], and yet there is no 
universal conversion between the two units.  Thus, dimensional balance is weaker than unit 
conformance, which is what is actually required to make computational sense of additions, 
subtractions and comparisons. 

There are other rules required for dimensional soundness.  For instance, dimensionless numbers 
can be additively combined or compared only with other dimensionless numbers.  Thus, 
dimensionlessness is itself essentially another dimension.  Moreover, certain quantities, such as 
numbers to be used as powers, must be dimensionless.  In the expressions below, for example, the 
argument a must be dimensionless. 

ba  ln(a)  sin-1(a)  a + 3  a2 + a 

exp(a)  log10(a)  arctan(a) a < 4  a3 < 8 

Again, all that is really required is that the dimensions of the argument a balance with a 
dimensionless quantity.  Dimensionlessness does not necessarily mean unitlessness.  For 
example, 4% and ‘3 meter / 2 meter’ are dimensionless.  So is ‘2 meter / 0.1 centimeter’, although 
its magnitude is not 2/0.1=20, but 2000 because of the relationship between meter and centimeter.  

Numbers that are ratios of similarly dimensioned quantities are generally regarded as 
dimensionless.  For this reason, certain quantities, such as plane and solid angles (Wildi, 1980), 
probabilities (Finney, 1977), specific gravity and radioactivity (ICRU, 1980), are conventionally 
considered dimensionless, even though they may or must be expressed with non-degenerate units.  
To simplify the task of handling dimensions, some researchers (e.g., Lin and Segel, 1988; inter 
alia) have encouraged modelers and analysts to express equations in terms of dimensionless 
quantities.  This practice, however, may be more mistake-prone than carrying units along through 
the calculations.  For example, although it is possible to simplify a contaminant dose that has 
units “grams per kilogram” to a pure number, it may not be desirable to do so if its interpretation 
is thereby masked.  Moreover, as Hart (1995) has argued, expressing equations with 
dimensionless variables does not escape the restrictions induced by dimensional algebra so much 
as it merely obscures them.  For example, although international convention holds that both the 
radian and bequerel (a unit of radioactivity) are dimensionless, expressions such as the following 
are obviously nonsensical.  

0.3 radians + 14   10 bequerels < 100 

1 radian £ 200 bequerel  sin(36 bequerels) 

Angles and radioactivity cannot be added to or compared with pure numbers.  Neither are angles 
and radioactivity exchangeable or even conformable.  Even if they are dimensionless, angles still 
have units (radians, degrees, minutes, seconds, grads, L-turns, etc.) which are certainly neither 
interchangeable nor ignorable.  For the sake of checking the integrity of algorithms and 
calculations, it makes sense to retain all natural units (contra Lin and Segel, 1988) and propagate 
them through mathematical expressions. 
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CORRECTING CONFORMABLE UNITS 

Computing the truth or numerical value of the following expressions involves implicit unit 
conversions. 

14 centimeters + 10 inches 

20 kilograms > 48 ounces 

0.3 radians - 120 degrees 

200 bequerel + 40 picocuries 

100 watts ´ 15 seconds + 4.5 newtons ´ 2.2 meters + 9 joules 

Although these expressions are obviously meaningful, they are not well handled by any of the 
calculation tools commonly in use today.  Entering, for instance, “14 plus 10” on a calculator 
yields the result 24, but the sum of 14 centimeters and 10 inches is neither 24 centimeters nor 24 
inches.  

However, automatic unit conversions can be implemented using a graphical model of the 
relationships among units described by Wildi (1988).  In Figure 1, each node of the graph 
represents a unit of time.  Each edge of the graph connecting two units is associated with a 
conversion factor by which one unit can be converted into the other, through either multiplication 
or division.  So long as the graph is a tree, there exists a unique path that defines the conversion 
factor between the units.  It is a straightforward programming task to traverse such a tree and 
deduce the conversion factor between any pair of nodes on it.  If the graph is not a tree, then any 
path connecting the two nodes will suffice to define a conversion factor between the units.  In 
principle, multiple paths could be used to optimize precision of the conversion factors.  Different 
dimensions are represented by different trees and a system of measurement by a forest of such 
trees. 

Fluctuating or indeterminate unit definitions can be handled either by repeatedly updating the 
conversion factors for each edge of the tree or by using intervals to represent the factors.  The 
former will be useful in currency conversions where monetary exchange rates vary daily.  The 
latter will be useful in representing unresolvable uncertainty.  For instance, the actual length of 
the ancient unit ‘span’ was variously defined in different localities and periods (May and 
Metzger, 1973; Dilke, 1987).  Unless external calibration happens to be available, historical uses 
of the term are usually ambiguous.  Interval representations of conversion factors will also be 
useful in high-precision calculations (Moore, 1966; Alefeld and Herzberger, 1983).  Although 
many unit conversions are mathematically precise (e.g., there are exactly 12 inches in a foot, and 
exactly 100 centimeters in a meter by definition), some unit conversions are necessarily 
approximate.  For instance, because ‘kilogram’ is still defined by reference to an artifact rather 
than a universal constant, an infinitely precise conversion between it and another unit of mass is 
impossible.  Other units based on physical measurements, such as electron rest mass or solar year, 
cannot be measured with perfect precision.  

Temperature conversions require a similar but slightly more complicated scheme that allows 
addition and subtractions as well as multiplications and divisions.  Monetary currency 
conversions involving transaction or broker fees can be handled with the same approach.  

 



 5

Figure 1.  Tree defining units of time in terms of the base unit second (cf. Wildi, 1988). 
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Some ambiguity persists in commonly used unit systems.  For instance, ‘minutes’ measures both 
[time] and [angle].  The term ‘rad’ is the symbol for radians measuring [angle] and a unit of 
[radiologic dose].  Further ambiguities arise in colloquial usage (e.g., ‘pound’ measures both [force] 
and [mass]).  These ambiguities can be resolved by context, conventions or explicit reference. 

INADEQUACY OF COMMON CALCULATION TOOLS 

All of the common tools used for making calculations, including hand-held calculators, 
microcomputer spreadsheets, and programming languages such as Java, Pascal, C, BASIC and 
FORTRAN, lack any provisions to check that the expressions they are computing are 
dimensionally correct.  Interactive spreadsheets are especially vulnerable to unit and dimensional 
errors because the mathematical formulas are often cryptically expressed and because making 
unannotated changes is easy and virtually untraceable.  Because the necessary checking can be 
very tedious by hand, errors are common.  As Loehle (1991) has pointed out, it is startling to 
discover just how frequently even sophisticated modelers make dimensionally nonsensical 
models.  Unless the work has been very carefully reviewed, complex models involving many 
equations are almost guaranteed to contain at least one fundamental error.  It may simply be a 
matter of chance whether such an error turns out to be inconsequential or extremely serious.  An 
example of the latter result is the recent crash of NASA’s Mars Climate Orbiter (Isbell et al., 
1999) due to a mismatch of English and metric units in the software controlling orbital insertion.  
It is interesting to note that even mandatory exclusive use of metric system units would have been 
insufficient to prevent the disaster if mismatches could still arise between the meter-kilogram-
second (MKS) and the centimeter-gram-second (CGS) conventions. 

Although comprehensive unit conversion tables are widely available (e.g., Beyer, 1978; 
Pennycuick, 1988; Wildi, 1988; ASTM, 1992), most programmers have limited themselves to the 
unfriendly option of forcing a user to make all inputs in specific units.  This usually necessitates 
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the user’s doing pencil-and-paper preprocessing of input, which is both inconvenient and prone to 
error.  Some state-of-the-art scientific software allows users to specify units for the quantities 
entered, but the programs invariably treat these units as mere labeling and leave it to the user to 
ensure dimensional soundness.  The problem may even become worse when inputs from users are 
permitted in arbitrary units as it requires the user to be very careful to express all measures in 
appropriate units or to make the cumbersome conversions whenever adding or comparing 
numbers.  Burdening a user with this responsibility is unreasonable if the user is not privy to the 
inner workings of the software. 

SOFTWARE STRATEGIES 

Comprehensive software tools have recently become available for checking programs, equations 
and calculation streams for dimensional soundness.  Correctness depends on conformance at two 
levels: balance of dimensions and agreement among units.  Error at either level can be detected 
automatically by these software tools.  

Loehle (1991) described a software tool called Dimensional Reasoner that allows modelers to 
check their programs and algorithms written in FORTRAN or BASIC for dimensional soundness.  
Units are specified for each variable in the program by adding comments to the source code.  The 
source code is then pre-compiled by Dimensional Reasoner which symbolically evaluates the 
calculations embodied in the code to check for dimensional soundness.  Figure 2 displays an 
example subroutine in FORTRAN.  In this computer language, a C in the first column of a line 
marks it as a comment, which is ignored by the FORTRAN compiler.  If the second character in a 
comment line is a U, Dimensional Reasoner will interpret the line as a unit assignment.  
FORTRAN uses “**” to denote exponentiation and SQRT for the square root function.  Figure 3 
displays part of the output from Dimensional Reasoner resulting from an analysis of the code in 
Figure 2.  In this output, the symbol N represents a dimensionless quantity.  Note that the 
subroutine is dimensionally correct, except for the last two equations.  In the first case, the 
addition is not possible.  In the second case, the assignment cannot be completed. 

 
Figure 2.  Sample input for Dimensional Reasoner. 

      SUBROUTINE TESTDIM(U,V,Y,Z) 
CU    U = meter 
CU    V = dollar 
CU    W = widget 
CU    X = meter 
CU    Y = meter**2 
CU    Z = dollar/widget 
      REAL U,V,W,X,Y,Z 
      X = 5.0 
      X = 6 * X + U + SQRT(X) * SQRT(U) + SQRT(Y) + (Y / U)  
      W = 12  
      V = Z * W 
      Z = X**-1 * V * (X + X) / W 
      Z = U + V 
      Z = U * V 
      STOP 
      END 
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Figure 3.  Part of the resulting output from Dimensional Reasoner. 

X = 6 * X + U + SQRT(X) * SQRT(U) + SQRT(Y) + (Y / U)  
METER=N**0*METER+METER+(METER)**0.5*(METER)**0.5+(METER**2)**0.5+(METER**2*METE
R**-1) 
METER=N**0*METER 
EQUATION OK 
 
V = Z * W 
DOLLAR=DOLLAR*WIDGET**-1*WIDGET 
DOLLAR=DOLLAR*WIDGET**0 
EQUATION OK 
 
Z = X**-1 * V * (X + X) / W 
DOLLAR*WIDGET**-1=METER**-1*DOLLAR*(METER+METER)*WIDGET**-1 
DOLLAR*WIDGET**-1=METER**0*DOLLAR*WIDGET**-1 
EQUATION OK 
 
Z = U + V 
DOLLAR*WIDGET**-1=METER+DOLLAR 
ERROR: THE RIGHT SIDE OF THIS EQUATION DOES NOT BALANCE DIMENSIONALLY 
 
Z = U * V 
DOLLAR*WIDGET**-1=METER*DOLLAR 
ERROR: THE TWO SIDES OF THIS EQUATION DO NOT BALANCE DIMENSIONALLY 

 

Units Calculator (Ferson and Kuhn, 1993; Legendre 1994) also does dimensional and unit 
checking.  It accepts input interactively from a user or reads mathematical expressions from 
ASCII files in which units are associated with numerical magnitudes and embedded directly in 
mathematical expressions.  Units Calculator not only checks the dimensional soundness of 
calculations and comparisons, but also resolves unit conflicts when it is possible to do so.  For 
instance, if A is 6 grams and B is 2 kilograms, the software knows that A is less than B even 
though 6 is greater than 2.  It also knows that the sum of A and B is 2.006 kilograms.  As a 
convention, it assumes the units of the last term mentioned are to be those of the result, so B+A 
would yield 2006 grams.  If C is 15 centimeters, the program also knows that C cannot be added 
to A or B.  The software detects attempts to (1) add, subtract or compare nonconforming units; (2) 
raise a number to a power that is not dimensionless; (3) take the logarithm of a number that is not 
dimensionless; or (4) take the sine, cosine or tangent of a quantity that is not an angle.  The 
software knows over 600 units, symbols and abbreviations in 60 dimensions.  The software fully 
supports automatic unit conversions, including units from five different temperature scales.  It 
checks the dimensional soundness of expressions involving even units it does not recognize (such 
as ‘widgets’).  It understands rich-text-formatted exponents as well as pure ASCII files in which 
the exponents appear as trailing characters as in “meter3” or are enclosed in braces as in 
“meter{-3}”.  It also interprets words such as “squared”, “cubic” and “per” that occur in unit 
strings.  In addition to basic arithmetic operators (+, -, ´, ¸, ^, min, max), it supports standard 
transcendental functions (e.g., exp, ln), trigonometric functions, arbitrary powers, the absolute 
value function, and magnitude comparisons (<, £, >, ³, =).  The software automatically simplifies 
results by combining like units so that entering “3 m s ´ 1 m / s2” yields the result “3 m2 s-1”.  
However, different units are not combined unless it is necessary to do so to complete a 
calculation, or on specific request.  Several further simplifications are possible, including 
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combining like dimensions, in which “0.6 cm meter yard day sec” is simplified to 620.001124 
yard3 sec2”, and conversion to SI units, in which it is simplified to “474.02496 meter3 second2”.  
The software can also convert a quantity into specific units (if it is possible to do so).  Figures 4 
and 5 show sample input and output from Units Calculator.  In these figures, ^ is used to denote 
exponentiation, @ marks a variable, and a comma instructs the software to convert a quantity to 
specified units. 

 
Figure 4.  Input for Units Calculator. 

5 kg * 8 ft / 2 sec2 + 3.2 N - 0.1 newtons 
@x = 6*5 meters + 12 m+sqrt(15 ft)*sqrt(1200cm)+(2 square meters)^0.5+(2 m2/m) 
@x, meters 
5 m ^ -1 * 40 dollar * (5 meter + 500 cm) / 12 widgets, dollar/widget 
12 meters + 10 dollars 
@z = 12 meters * 10 dollars 
@z, dollar/widget 
 
 

Figure 5.  Resulting output from Units Calculator. 

5 kg * 8 ft / 2 sec2 + 3.2 N - 0.1 newtons 
9.196 newtons 
@x = 6*5 meters + 12 m+sqrt(15 ft)*sqrt(1200cm)+(2 square meters)^0.5+(2 m2/m) 
Ok 
@x, meters 
52.82123726 meters 
5 m ^ -1 * 40 dollar * (5 meter + 500 cm) / 12 widgets, dollar/widget 
6.66666667 dollar·widget-1 
12 meters + 10 dollars 
undefined 
[length] and [currency] don't conform 
@z = 12 meters * 10 dollars 
Ok 
@z, dollar/widget 
undefined 
[length]·[currency] and [currency]·widget-1 don't conform 

 

The public domain program DimCalc by G.W. Hart supports addition, subtraction, multiplication, 
division, integer powers and unit conversions of dimensioned quantities in arbitrary mathematical 
expressions.  For instance, entering the expression “2000 cm per s + 0.1 mph” in DimCalc and 
requesting the result be expressed in the default units for velocity yields the answer “20.0447 
m/s”.  DimCalc detects the mistake in the expression “2000 kg per s + 0.1 mph” and gives the 
explanation “Sum involves different types”.  The program was created as an interactive 
demonstration program and is not configured to read and check calculation streams or algorithms.  
The philosophy of DimCalc is that arguments must be dimensionless for transcendental functions 
like exp, ln, and log10, and (following the CIPM) for trigonometric functions like sine, cosine 
and tangent, and even for fractional powers (including square root) and the absolute value 
function.  Consequently, it does not support any of these functions.  Undefined units (‘widgets’) 
are not supported except by prior addition into a user-editable ASCII file that defines units.  It 
does not support magnitude comparisons (<, £, >, ³, », =, min, max).  Temperatures are 
interpreted as temperature differences; conversions are handled by a separate interface.  However, 
DimCalc will detect and flag dimensional errors and automatically correct mismatched but 
conforming units to evaluate complex mathematical expressions.  It knows 58 dimensions and 
hundreds of units in common use.  It can be obtained by anonymous FTP from the 
ftp.ctr.columbia.edu/users/hart/ directory (see http://www.ctr.columbia.edu/~hart/hart.html). 
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The commercial scientific software Mathcad 2000 (MathSoft, 1999) also supports automatic unit 
conversions.  It detects impossible unit conversions, use of dimensioned numbers as powers, 
inappropriate use of dimensioned numbers as arguments of transcendental and trigonometic 
functions.  Mathcad knows 32 dimensions and over 300 common units, symbols and 
abbreviations.  It supports arbitrary arithmetic expressions, transcendental and trigonometric 
functions, magnitude comparisons (<, £, >, ³, min, max), absolute value and arbitrary (scalar, 
dimensionless) powers.  Users can define their own units on the fly, but temperatures are not fully 
supported.  Entering “2000 cm sec-1 + 0.1 mph =” yields the answer 20.045 m/s.  It correctly 
evaluates an expression such as “(1 ft + 2 m) m” as 2.305 m2.  It detects the error in the expression 
“1 ft + (2m/ 2 cm)” and gives the hint “The units in this expression do not match”.  In Mathcad, 
units are treated as variables (with blanks denoting implicit multiplication).  This means that 
defining a variable m means the predefined symbol for meter cannot be used, or will result in 
unexpected results. 

Table 1 is a side-by-side comparison of the features of several commercially available software 
tools that check dimensional balance and conformity of units.  The table reveals the various 
tradeoffs buyers must make in selecting a tool to use.  Mathcad 2000, Unicalc, and Unisolver 
each allow users to evaluate trigonometric functions of angles with specified units as well as pure 
numbers, which are assumed to be angles in radians.  Units Calculator considers the latter 
ambiguous and treats it as an error.  Although most of the software packages include temperature 
conversions, only Units Calculator supports integrated calculations with temperatures so that it 
can compute, for instance, an average like (102 degrees Farenheit + 40 degrees Celsius )/2.  Most 
of the packages uses infix notation, commonly called algebraic notation, but Unisolver employs 
reverse Polish notation.  A software package can “automatically convert to SI” if a user can ask it 
for the SI equivalent of a quantity in, say, miles per hour without having to tell it the conversion 
should be to meters per second.  Most of the software packages support interactive calculations; 
only Dimensional Reasoner performs checks on software source code.   

Several of the packages support some form of dimensional reasoning, including calculations with 
undefined units (‘widgets’) and non-numerical checking of dimensional relationships.  Only 
Unicalc allows users to solve numerical problems purely by dimensional analysis.  For instance, 
suppose a farm combine cuts 30-foot swaths at 5 miles per hour through a corn field that 
produces 210 bushels per acre, and that corn sells for 3 dollars/bushel.  Unicalc can compute the 
hourly monetary value of the harvest without being told what mathematical operations to use.  
When a user enters the expression “30 ft;  210 bu/acre;  5 mph;  3 $/bu  ?  $/hour”, the software 
yields the answer “11454.5 $/hour”.  The question mark specifies the units of the desired output.  
The semicolons tell the software to automatically derive the appropriate equation relating the 
parameters entered, assuming a multiplicative relationship.  The user need only enter the 
quantities known to affect the output.  The usefulness of this feature is apparent, but caution 
should be exercised when employing it.  Physicists have long used dimensional analysis of this 
kind, although there has been debate about whether the strength of dimensional checking extends 
to deduction (Wilson 1952).  There is a danger that the software’s flexibility could yield 
computational errors if used inattentively.   

Of course, even with conscientious use these software tools cannot be a panacea for mathematical 
errors.  In particular, there is no guarantee that all calculations that appear dimensionally sound 
are actually mathematically sensible and scientifically relevant.  Nevertheless, these tools should 
help prevent a broad class of errors currently afflicting serious quantitative work. 
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AUDITING CALCULATIONS IN DOCUMENTS 

An important use of the new software tools is to check the integrity of mathematical expressions 
and the calculations they yield that appear in documents.  This checking can detect many kinds of 
errors of varying significance.  For instance, in many circumstances where there are apparent 
dimension or unit errors, the problem may be the result of a simple typographical error.  Such 
errors are roughly equivalent in gravity to a misspelling, whose consequence might be limited to 
temporary reader confusion and writer embarrassment.  Another category of errors, which might 
be called computational errors, occurs when a mistake of dimensions or units leads to a 
numerically erroneous result.  Such an error can occur when, for example, measurements in 
meters and feet are ‘added’ without first converting one of the quantities.  In this case, the 
document is simply factually incorrect.  In other circumstances, dimensional errors belie an even 
deeper problem, which might be called a fundamental error.  Adding meters to seconds, raising a 
scalar to the 2 inch power, taking the sine of 6 meters, and similarly profound mistakes are 
examples of fundamental errors.  Unlike computational errors, fundamental errors make the 
affected mathematical expressions utterly nonsensical and, as a consequence, may render the 
overall argument and perhaps the entire document meaningless. 

In our experience, errors of all three kinds can persist even after review of the document.  In the 
case of one government document we studied (EPA, 1993), dimensional errors were found after 
the periods for peer review and public comment for the document had ostensibly ended.  Despite 
both peer and public review, there were dimensional errors in two out of the four central 
mathematical expressions in the document.  Only after the errors were detected by our software 
was the document corrected in a revision. 

IMPLICATIONS FOR SOFTWARE DEVELOPMENT 

Over the last quarter century, concerted effort has been focused on refining the process by which 
computer software programs are created (Dahl et al., 1972).  Although considerable 
sophistication has been introduced into the ‘art’ of programming, virtually no facilities have been 
available to programmers to help them ensure their code is dimensionally sound.  There has 
likewise been very little attention to the issue in the development of new programming languages 
and software environments (see, e.g., Jorgensen, 1995).  This situation should change now that 
convenient software tools are available to check the dimensional soundness of source code and 
run-time calculations.  Such application would be a straightforward use of automation to remedy 
a large class of inadvertent errors by programmers and users (Juran and Gryna, 1988).  Using the 
tools requires only that the programmer define the units of the variables and parameters used in 
the code.  Associating units or dimensions with each variable and constant requires the same level 
of programmer effort as assigning types to them (i.e., specifying whether they are integers, real 
numbers or characters).  In the same way that strict variable typing both improves the readability 
of code and facilitates much more comprehensive compile-time checking against errors, the extra 
effort required to associate units with variables should quickly pay for itself in allowing automatic 
review for dimensional concordance and in improving the self-documentation of the program.  
Indeed, a programmer’s use of unitless variables or constant numbers should be discouraged for 
the same reasons that using typeless variables is frowned upon as poor programming practice, 
because it would prevent the compile-time detection of programmer mistakes. 

DISCUSSION 

The examples given at the beginning of the paper illustrate that checking for dimensional 
soundness should focus on units rather than dimensions.  Dimensional balance does not require 
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that the units be identical, or even that dimensions be identical.  In fact, even having identical 
dimensions is not by itself enough to guarantee conformance among the units.  Dimensional 
balance is necessary but not sufficient to ensure soundness.  Conformability of the units is the 
necessary and sufficient condition for additions, subtractions and comparisons to make sense.  As 
a practical matter, the units of a quantity are more important than its dimensions per se.  In order 
to detect errors of unit conformance, therefore, it is important to carry units of all quantities 
through calculations even when they are considered dimensionless. 

All mathematical expressions, whether numerical or not, must balance dimensionally and must 
permit conformance among the units for the variables involved.  Applying dimensional and unit 
analyses to complex models provides a measure of validation that ensures the absence of 
fundamental syntactical errors that would otherwise guarantee senselessness of the mathematical 
expression.  Recently developed software tools for dimensional analysis of calculation streams, 
algorithms and programs provide convenient filters for finding these profound mathematical errors.  
That these checks can now be performed automatically by software is an important development 
because it means that comprehensive reviews of units and dimensions can now be routine.  

Few authors today hesitate to use the sophisticated spell checking features available in modern 
document processing software (Salton, 1989, page 426ff, and numerous references therein).  
Some even routinely use grammar and style checkers to improve the composition itself.  The use 
of such software allows a motivated user to detect and correct a variety of potentially 
embarrassing mistakes in a text ranging from typographical errors to awkward phrasing.  Similar 
automated checking should be used for equations and calculations that constitute an important 
component of the non-textual content of scientific and technical documentation.  Software that 
can check units provides a very convenient tool for reviewing calculations and programming.  
Applying such checks can in principle eliminate most instances of an entire class of errors.  
However, not all unit errors can be detected by such an approach.  Just as a spell checker cannot 
detect that ‘witch’ is an incorrect spelling of ‘which’, an automatic units analysis will not be able 
to detect that ‘ng’ has been written where ‘mg’ was intended.  In principle, however, such 
mistakes might be detectable by meta-level software¾analogous to grammar checkers¾that 
follow higher-level patterns in user input. 
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Table 1 
� � 'LP&DOF� 'LP�5HDVRQHU� 0DWKFDG������ 8QLFDOF� 8QLVROYHU� 8QLWV�&DOFXODWRU�

(UURUV�GHWHFWHG� � � � � � �

�$GGLQJ�RU�FRPSDULQJ�DSSOHV�DQG�RUDQJHV� <HV� <HV� <HV� <HV� <HV� <HV�

�5DLVLQJ�D�QXPEHU�WR�D�QRQ�GLPHQVLRQOHVV�SRZHU� <HV� 1R� <HV� <HV� <HV� <HV�

�7DNLQJ�D�ORJDULWKP�RI�QRQ�GLPHQVLRQOHVV�QXPEHU� 1R� 1R� <HV� <HV� <HV� <HV�

�7ULJRQRPHWLF�IXQFWLRQ�RI�QRQ�DQJOH�YDOXH� 1R� 1R� <HV� <HV� <HV� <HV�

9RFDEXODU\� � � � � � �

�8QLWV��V\PEROV�DQG�V\QRQ\PV� ���� �� ���� ���� ���� ����

�'LPHQVLRQV� ��� �� ��� ��� ��� ���

�$QJOH�PHDVXUHV� �� �� �� �� �� ��

�7HPSHUDWXUH�VFDOHV� �� �� �� �� �� ��

�&XUUHQFLHV� �� �� �� �� �� ���

�8VHU�GHILQHG�XQLWV�	�GLPHQVLRQV� <HV� <HV� <HV� <HV� 1R� <HV�

�$UELWUDU\�XQLWV��ZLGJHWV�� 1R� <HV� <HV� <HV� 1R� <HV�

�3OXUDOV�UHFRJQL]HG�DV�V\QRQ\PV� <HV� <HV� 1R� <HV� 1R� <HV�

�0RGLILHUV��SHU����VTXDUH��	��FXELF�� SHU� 1R� 1R� <HV� 1R� <HV�

2SHUDWLRQV� � � � � � �

�$XWRPDWLF�FRQYHUVLRQ��H�J�����IW�����P�� <HV� 1R� <HV� <HV� <HV� <HV�

�&RQYHUW�WR�VSHFLILHG�XQLWV� <HV� 1R� <HV� <HV� <HV� <HV�

�$ULWKPHWLF�RSHUDWRUV�������[���� <HV� <HV� <HV� <HV� <HV� <HV�

�3RZHUV�ZLWK�A�RU�

� <HV� <HV� <HV� <HV� <HV� <HV�

�PLQ��PD[� 1R� 1R� <HV� 1R� 1R� <HV�

�<, £, >,³  1R� 1R� <HV� 1R� 1R� <HV�

�7ULJRQRPHWULF�IXQFWLRQV��H�J���FRV����GHJUHHV��� 1R� 1R� <HV� <HV� <HV� <HV�

�8QLWOHVV�DQJOHV��H�J���FRV������� 1R� 1R� <HV� <HV� <HV� 1R�

�7UDQVFHQGHQWDO�IXQFWLRQV��H[S��OQ��ORJ���� 1R� 1R� <HV� <HV� <HV� <HV�

� 6TXDUH�URRW��IUDFWLRQDO�URRWV� 1R� <HV� <HV� <HV� <HV� <HV�

�$EVROXWH�YDOXH��URXQG�	�WUXQFDWH�IXQFWLRQV� 1R� 1R� <HV� 1R� 1R� <HV�

� ,QWHJUDWHG�FDOFXODWLRQV�ZLWK�WHPSHUDWXUH� 1R� 1R� 1R� 1R� 1R� <HV�

�$VVLJQPHQW�WR�YDULDEOHV� 1R� <HV� <HV� <HV� 1R� <HV�

�1RWDWLRQ�IRU�FRPSRXQG�H[SUHVVLRQV� DOJHEUDLF� DOJHEUDLF� DOJHEUDLF� $OJHEUDLF� 531� DOJHEUDLF�

8VHV� � � � � � �

� ,QWHUDFWLYH�FDOFXODWLRQV� <HV� 1R� <HV� <HV� <HV� <HV�

� 6RIWZDUH�FRGH�FKHFNLQJ� 1R� )2575$1� 1R� 1R� 1R� 1R�

�'LPHQVLRQDO�UHDVRQLQJ��>IRUFH@��ZLGJHWV��PSK�P�V�� 1R� <HV� <HV� <HV� 1R� <HV�

�&KHFNLQJ�FDOFXODWLRQV�LQ�ILOHV� 1R� <HV� <HV� 1R� 1R� <HV�

2WKHU�IHDWXUHV� � � � � � �

�$XWRPDWLF�FRQYHUVLRQ�WR�6,� <HV� 1R� <HV� 1R� <HV� <HV�

�$XWRPDWLF�FRQYHUVLRQ�WR�86�XQLWV� 1R� 1R� <HV� 1R� <HV� 1R�

�6XSHUVFULSWV� 1R� 1R� <HV� 1R� 1R� <HV�

�3UHGHILQHG�FRQVWDQWV� �� �� ��� ��� �� ��

�8VHU�H[WHQVLEOH�SUHGHILQHG�FRQVWDQWV� <HV� <HV� <HV� <HV� 1R� <HV�

'RFXPHQWDWLRQ� � � � � � �

�0DQXDO� QRQH� ���SDJHV� ����SDJHV� ���SDJHV� ���SDJHV� ���SDJHV�

�+HOS�ILOH� ���.� QRQH� �����.� ���.� ���.� ���.�

�(UURU�FRQGLWLRQ�KLQWV� <HV� <HV� <HV� <HV� 1R� <HV�

3XUFKDVLQJ�LQIRUPDWLRQ� � � � � � �

�3ULFH� )UHH� ���� ����� �������� ���� ����

�:RUOGZLGH�:HE�DGGUHVV� FWU�FROXPELD�

HGX�aKDUW�

UDPDV�FRP� PDWKVRIW�FRP� FDOFKHP\�FRP� GHOWD�HQJ�FRP� UDPDV�FRP�
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